Max Planck Institute for Solid State Research

TOPOLOGICAL MATERIALS AND SOLID STATE CHEMISTRY

LESLIE MAREIKE SCHOOP TOPOLOGICAL MATTER SCHOOL 2017 DONOSTIA-SAN SEBASTIAN 08/24/17

NEW MATERIALS

- Make materials that are of interest for PHYSICS
- Use CHEMSITRY knowledge to create them

Image from https://epd.sutd.edu.sg

WHY MAKE NEW MATERIALS? EXAMPLE: QUANTUM COMPUTING

Topological qubits still need to be invented

• This requires new materials

Topological qubits

Quasiparticles can be seen in the behavior of electrons channeled through semiconductor structures. Their braided paths can encode quantum information.

Longevity (seconds) N/A Logic success rate N/A Number entangled N/A Company support Microsoft. Bell Labs

Greatly reduce errors

Cons Existence not yet confirmed

Science News, Dec 1st 2016

Crystal chemistry and structure

Electronic structure

Properties

THE STRUCTURE OF MATTER

WHAT IS SOLID STATE CHEMISTRY ABOUT?

- Traditionally: The structure of matter
- Crystal structures
- Bonding
- What are stable structures for compositions?
- Electron counting
- Ionic and atomic radii

Schoop, Eger, Kuhn, Nuss, Kremer, Lotsch inorganic chemistry, 56 (3), 1121-1131 (2017)

THE STRUCTURE OF MATTER - WHICH STRUCTURE IS STABLE?

MgAgAs (half Heusler)

LiGaGe

ZrBeSi

TiNiSi

Governed by:

- Electron count
- Sizes of the elements
- Type of bonding

NaCl: 1+7 = 8 CaF₂: 2+2*7=16 \rightarrow 8 per F

Number of electrons for filled shell

2

8

almost always 3

Graf, Felser, Parkin, Progress in Solid State Chemistry 39 (2011) 1.

Credit: Claudia Felser and Binghai Yan

SOME EXAMPLES

ELECTRON COUNTING AND BONDING

- Found new phases LnAuSb
- Known related phases: 18 electrons and charge balanced
- Why are our phases stable too?
- Au-Au bond!
- One electron localized in Au-Au bond

3+11+ 5 = 19

Seibel, Schoop, et al . Gold-Gold Bonding: The Key to Stabilizing the 19-Electron Ternary Phases LnAuSb (Ln= La-Nd and Sm). Journal of the American Chemical Society, 2014.

ZINTL PHASES

- Zintl lons can make electron counting complicated
- Polyanions or Polycations
- Example: CaSi₂: Ca²⁺ and Si₂²⁻
- Si₂²⁻ is polyanion
- You need to look at the crystals structure to know how to count electrons!

2+2*4 = 10 5 per Si

WHY SOMETIMES MORE AND SOMETIMES LESS ELECTRONS?

- Polycations: bonding electrons don't count towards valence electron count
- Polyanions: Anions need less electrons to be closed shell. They SHARE electrons. Add number of bonds to electron count
- VEC(X) > 8 \rightarrow Polycations
- VEC(X) < 8 \rightarrow Polyanions

Polycation

Polyanion

ZINTL PHASES: COUNT ELECTRONS TO FIND NUMBER OF BONDS

- Number of bonds in Polyanions:
- b(xx) = 8(or18) VEC(x)

ZINTL PHASES: COUNT ELECTRONS TO FIND NUMBER OF BONDS

- Number of bonds in Polyanions:
- b(xx) = 8(or18) VEC(x)

4+4+6 = 14 14 per Si b(Si-Si)=18-14 =4

SIZE MATTERS!

XYZ

Ca CuP Ba AgBi

Schoop, Xie, Medvedev, Felser, Cava Solid State Sciences 30 (2014): 6-10.

IONIC RADII – PAULING RULES

- A coordination polyhedron of anions is formed around each cation, wherein:
- The cation-anion distance is determined by the sum of the ionic radii, and
- The coordination polyhedron is determined by the cation/anion radius ratio

 $r_k/r_a > 0.732$ cubic coordination $r_k/r_a 0.424-0.732$ octahedral coordination $r_k/r_a < 0.424$ tetrahedral coordination

http://abulafia.mt.ic.ac.uk/shannon/ptable.php

ELECTRONEGATIVITY DIFFERENCE – IONIC VS COVALENT BONDING

 Large difference in electronegativity: ionic bonding. Only charge balance (salt like) compounds possible

-		_
	+++	+
	+++	+

• Small electronegativity difference : covalent bonding. Also metallic compounds possible

CONNECT KNOWLEDGE ABOUT STRUCTURE AND COMPOSITION WITH PROPERTIES

- Properties often run in certain structure types
- Famous example: Superconductors

 Knowledge about structural stability is very important!

CHEMICAL CONCEPTS: GIVE BASIC IDEAS ABOUT PROPERTIES

- Electron count (8 or 18)
- Electronegativity difference
- Heavy vs. light elements

ELECTRONIC STRUCTURE CALCULATIONS

- The electronic structure can give important hints for a materials property
 - Topological materials: Clearly defined by their electronic structure
 - Superconductivity: van Hove singularity, steep DOS

3D DIRAC SEMIMETALS

- 3D analogue of graphene
- Linear dispersed bands result in mass-less electrons
- Exceptional properties such a very high carrier mobility and extreme magnetoresistance
- Could find application in electronics
 - ultrahigh frequency transistors
 - novel electronics
 - qubits for quantum computing

Gibson, Schoop, Muechler, Xie, Hirschberger, Ong, Car, Cava Phys. Rev. B 91 (20), 205128 (2015)

SCHEMATIC BAND STRUCTURE OF 3D DIRAC SEMIMETALS

 E_F

- Band inversion needed
- In order to not gap, the crossing bands must have different irreps (group theory)
- In the presence of SOC double group is needed not point group (reduces number of irreps)
- Only C₃, C₄ or C₆ symmetry allow enough irreps

EXAMPLE: POINT GROUPS C_{2V} AND C_{4V}

Without SOC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
With SOC	$\Gamma_5 E_{1/2} 2 0 2 0$	With SOC $\begin{array}{cccccccccccccccccccccccccccccccccccc$

Higher symmetry allows for more irreps But crossings are still coincidental!

To find Dirac Semimetals: Look for highly symmetric charge balanced compounds with not too high electronegativity difference and some SOC

EXAMPLE: Cd_3As_2

1.0

- Look for high symmetry materials
- Need band • inversion
- Charge • balanced: count electrons

3*2+2*5 = 168 per As

KNOWN DIRAC SEMIMETALS : Na₃Bi

- Hexagonal: cone along ΓA, C₆ rotation
- E_N (Bi) = 2.0 E_N (Na) = 0.9
- SOC much higher than in Cd₃As₂

Kurshwaha et al. APL Mater. 3, 041504 (2015) Xu, Su-Yang, et al. *Science* 347.6219 (2015): 294-298.

MORE EXAMPLES FOR CHARGE BALANCED COMPOUNDS

- BaAgBi family of compounds
- Crystalize in the ZrBeSi structure (hexagonal)
- Crossing along ΓA , C_6 rotation

2 + 11 + 5 = 18

Gibson, Schoop, Muechler, Xie, Hirschberger, Ong, Car, Cava Physical Review B 91 (20), 205128 (2015)

THE XYZ FAMILY OF COMPOUNDS WITH 18 ELECTRONS

- ZrBeSi structure is preferred for large alkaline earth elements
- Electronegativity difference can be tuned

Schoop, Xie, Medvedev, Felser, Cava Solid State Sciences 30 (2014): 6-10.

HOW DOES ELECTRONEGATIVITY EFFECT THE BAND STRUCTURE?

Gibson, Schoop, Muechler, Xie, Hirschberger, Ong, Car, Cava Physical Review B 91 (20), 205128 (2015)

3D DIRAC vs. WEYL

- TRB ISB

- Only 2 fold degeneracy
- Weyl points appear much more easily
- But are often off the high symmetry lines and hard to find
- Chemistry not so helpful here
- Except: break time reversal symmetry!

Lv, Ding PHYSICAL REVIEW X 5, 031013 (2015)

3D DIRAC LINE NODES

- If two bands cross and no crossing gaps
- 3D Dirac line nodes that are stable towards SOC are rare
- Need very highly symmetric materials with low SOC

Line node!

DIRAC SEMIMETALS FROM NON-SYMMORPHIC

- Non-symmorphic space groups contain glide mirrors or screw axis
- Symmetry elements do not conserve spatial origin
- Causes enlargement of the unit cell in comparison to symmorphic space groups

Symmorphic unit cell Non-Symmorphic

- Enlargement of unit cell causes folding of k-space
- Forced band touching, SOC has no effect
- Can result in Dirac semimetals

Young, Zaheer, Teo, Kane, Mele, Rappe Phys. Rev. Lett. 108, 140405 (2012)

NON SYMMORPHIC SYMMETRY \rightarrow NEW FERMIONS?

Example: New Fermions in Non-symmorphic materials

• 3-fold, 6-fold, 8-fold → New Fermions?

RESEARCH ARTICL

Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals

Barry Bradlyn^{1,*}, Jennifer Cano^{1,*}, Zhijun Wang^{1,*}, M. G. Vergniory¹, C. Felser⁴, R. J. Cava³, B. Andrei Bernevig^{1,1}

4 Author Millahore

"Constponing autors (mail benerg@privation.adu

A These authors contributed equally to the work.

trianele (15. Aug. 2016) del 353. tenze 6299, x01-36. JE26. Actemice. auf 500

Bradlyn, Cano, Wang, Vergniory, Felser, Cava, Bernevig. *Science*, *353*(6299), aaf5037. (2016)

EXPERIMENTAL CHALLENGES FOR REALIZING NON-SYMMORPHIC SEMIMETALS

Na₃Bi

3*1+5 = 8

"non-symmorphic DSM"

- Trivial insulator (even e⁻/site)
- Non-trivial Dirac metal (odd e⁻/site)

- Require odd electron count (per formula unit)
- Chemically unstable!

 \mathbf{Y}

Gibson et al. **Physical Review** B 91 (20), 205128 (2015)

FIRST PREDICTION: BiO₂

Young, Zaheer, Teo, Kane, Mele, Rappe Phys. Rev. Lett. 108, 140405 (2012)

WHY NO BIO₂ ? IONIC RADII

 $r_M/r_X > 0.732$ cubic coordination $r_M/r_X 0.424-0.732$ octahedral coordination $r_M/r_X < 0.424$ tetrahedral coordination

$r_{Oxygen} = 1.4$ $r_{Si}/r_{O} < 0.414$ $r_{Bi}/r_{O} = at least 0.53 > 0.414$

1		Radii for Si						
los	Charge	Coordination	Spin State	Crystal Radius	Ionic Radius	Key		
	4	N Vi		0.4 0.64	0.26	- R*		
1				Radii for Bi				
				Radii for Bi				
los	Charge		Spin State	Radii for Bi Crystal Radius	Ionic Radius	Key		
				Radii for Bi				

http://abulafia.mt.ic.ac.uk/shannon/ptable.php R. D. Shannon Acta Crystallographica. (1976). A32, Pages 751-767

WHY NO BIO₂? - THE INERT PAIR EFFECT

- Bi⁴⁺ does not exist:
- 6s Orbital very low in energy!
- In general: watch out for preferred oxidation states

"FAKE" HALF FILLED BANDS: EXAMPLE: BaBiO₃

Appears to have half filled s band by simple electron counting Bi^{4+} : $6s^1$ configuration is unstable \rightarrow disproportionation Bi^{3+} and Bi^{5+}

"FAKE" HALF FILLED BANDS: ZINTL COMPOUNDS

- Zintl lons can make electron counting complicated
- Polyanions or Polycations
- Example: CaSi₂: Ca²⁺ and Si₂²⁻
- Si₂²⁻ is polyanion
- All bands are filled!

EXAMPLES FOR COMPOUNDS WITH HALF FILLED BANDS

- SrIrO₃: Orthorhombic form predicted to be non-symmorphic line node material
- 2 + 9+ 3x6 = 29 electrons → half filled Ir d band
- Stable from however is monoclinic and has Ir-Ir dimers
- Orthorhombic form can only be made as thin film or as powder with high pressure synthesis

Orthorhombic

monoclinic

SrIrO₃: PREDICTION VS. EXPERIMENT

Prediction (DFT)

Experiment on a thin film

Carter, Shankar, Zeb, Kee PRB 85 115105 (2012)

Liu, Li, Shen et al scientific reports 6:30309 (2015)

CAN CHEMISTRY HELP US HERE?

A WAY OUT WITH LESSONS FORM ORGANIC CHEMISTRY? Radical stability increases in the order methyl < primary < secondary < tertiary

- Molecules with Half filled orbitals are called radicals
- Highly reactive
- But: stable radicals do exist!

by resonance

Stable at room temperature

USE SIMILAR CONCEPT IN INORGANIC CHEMISTRY?

- Cluster compounds
- Have molecular orbitals
- Can delocalize an electron
- Partially filled bands!

Example: Chevrel phase $PbMo_6S_8$ Mo₆ cluster, 12 edges Cluster is filled with 24 electrons

PbMo₆S₈: Cluster has only 22 electrons (=3.66 electrons per Molybdenum)

superconducting

NON SYMMORPHIC CLUSTER COMPOUNDS?

 $P6_3/m$

Chevrel, Gougeon, Potel, Sergent, Ternary molybdenum chalcogenides: A route to new extended clusters. *Journal of Solid State Chemistry*, *57*(1), 25-33 (1985).

Formal

NON SYMMORPHIC CLUSTER COMPOUNDS?

X/Mo ₆	X/Mo	Compound	Cluster units	VEC/cluster	VEC/Mo	oxidation number = 6 - VEC
8	1.33	M,MoeXx	Mo.X.	20-24 e-	3.33-4	2.66-2
7.6	1.26,	In_3MonSep				
		2 In*1 ~ 1 In3*	$(Mo_8X_8)(Mo_9X_{11})$			
		In2 Mo15Sep	$= (Mo_6 X_6)^{0 \to 4^-} + (Mo_9 X_{11})^{2 \to 4^-}$	20-24 e-	3.33-4	2.66-2
		Ba2+ Mo15Se19		30-36 e	3.33-4	2.66-2
7.33	1.222	Agt.Mo.Sen	[Mo ₉ X ₁₁]			
	803-33		(Mo ₉ Se ₁₁) ^{3.6-}	35.6 e-	3.95,	2.04
		TI: MosSII	$(Mo_{4}X_{4})(Mo_{12}X_{14})$			
		98754-3012	$= (Mo_5 X_8)^{0 \rightarrow 4-} + (Mo_{12} X_{14})^{4- \rightarrow 0}$	20-24 e-	3.33-4	2.66-2
				44-48 e-	3.66-4	2.33-2
7	1.16,	Cs2Mo12Se14	Mo12Se14P-	46 e-	3.83,	2.16
6.66	1.11	Rb ₄ Mo ₁₈ Se ₂₀	Mo18Se20 4-	72 e-	4	2
6.50	1.08,	Cs6Mo26Se26	Mo2eSe26	98 e-	4.08	1.92
6.40	1.06	Cs-Mo-Sen	Mon-Sen-M-	124 .	4.13	1.87
6	1	TI2MocSee	Mos2Sca2	13 e-/Mos	4.33,	1.666

Chevrel, Gougeon, Potel, Sergent, Ternary molybdenum chalcogenides: A route to new extended clusters. *Journal of Solid State Chemistry*, *57*(1), 25-33 (1985).

BAND STRUCTURE OF TI₂Mo₆Se₆

Tl₂Mo₆Se₆

Gibson, Schoop, Muechler, Xie, Hirschberger, Ong, Car, Cava Physical Review B 91 (20), 205128 (2015)