Max Planck Institute for Solid State Research

FINDING AND CHARACTERIZING NEW TOPOLOGICAL MATERIALS

LESLIE MAREIKE SCHOOP

TOPOLOGICAL MATTER SCHOOL 2017

DONOSTIA-SAN SEBASTIAN

08/24/17

Crystal chemistry and structure

Electronic structure

Properties

RECAP: WHAT TO WE NEED TO FIND A 3D DSM

- Charge Balance
- High symmetry
- "good" ratio between electronegativity and spin orbit coupling

A CHEMIST'S PROBLEMS WITH KNOWN 3D DIRAC AND WEYL SEMIMETALS

- Toxic (arsenides)
- Air sensitive (Na₃Bi)
 - WTe₂ and ZrTe₅, both not stable in air when thin
- Very small range of linear bands

• None are made of only earth abundant elements

SYNTHESIS METHODS:

- Most common crystal growth methods:
- Vapor transport (e.g. TaAs, ZrSiS)
- Flux growth (e.g. Cd₃As₂, Na₃Bi, WTe₂)
- Bridgman growth (e.g. Bi₂Se₃, Bi₂Te₃, BTS)
- Floating zone (e.g. MnSi)

VAPOR TRANSPORT:

- Works usually well for materials containing S, Se, P or As
- Dependent on the ability to form volatile intermediate products that go to the gas phase
- Famous examples:
 - TaAs, NbP etc
 - ZrSiS

Gaseous transport agent

POSSIBLE TRANSPORT AGENTS

- I₂: easy to handle, works well for Zr, Hf, Nb and Ta compounds
- Br₂, a little harder to handle but sometimes better result
- Cl₂ nasty! But sometimes necessary (e.g. RuCl₃)
- SeCl₄ or TeCl₄: Good substitute for Cl₂
- NH₄Cl (HCl is active transport agent) works well for SnS₂ or oxysulfides

SeCl₄ \rightarrow Se(g) + 2 Cl₂(g) NH₄Cl \rightarrow NH₃(g) + HCl

SEED GROWTH

- Vapor transport can lead to extremely large single crystals
- Often extremely pure
- Seed growth can yield even larger crystals

Panella, Trump, Marcus, McQueen, arXiv:1706.02411.

LIMITATIONS OF VAPOR TRANSPORT:

- Cd₃As₂: competing phases!
- Grown with vapor transport: large crystals BUT RRR only about 8
- Grown from Flux: RRR > 4000
- Only flux grown crystals show ultra high mobility!

Scientific Reports **5**, Article number: 12966 (2015)

LIMITATIONS ON VAPOR TRANSPORT

- WTe₂:
- Magnetoresistance MUCH higher if crystals are grown from Te flux
- Probably because Te vacancies form easily

Ali, Schoop, Xiong, Flynn, Gibson, Hirschberger, Ong, Cava. EPL (Europhysics Letters), 110(6), p.67002. (2015)

Quartz wool filter **Flux Method** xtal Liquid metal or salt

Centrifugation at high temperatures

FLUX GROWTH

- Advantage: quench one phase, excess of volatile element possible
- Disadvantage: centrifuging at high T cause defects
- Famous examples:
 - Cd₃As₂, WTe₂, ZrTe₅ Fe-based supercondcutors, Na₃Bi

POSSIBLE FLUXES

- Low melting point elements: In, Sn, Pb, Sb, Bi, Te
- Self flux or foreign flux possible
- Study phase diagrams!
- Salts and oxides

Salt and oxide fluxes

BRIDGMAN METHOD

- Very easy: just heat until everything melts and cool very slowly from one end to the other of the container
- Often the best solution but works only for special phases
- Famous examples: Bi₂Se₃ and other tetradymites

VERIFYING THE BAND STRUCTURE

- You successfully grew a large enough crystal! Yayy ^(C)
- Next Question: does it cleave???
- ARPES will be done in UHV and need a clean surface!!

HOW TO EXPERIMENTALLY VERIFY THE ELECTRONIC STRUCTURE Sorts

- Use Angle Resolved Photoelectron Spectroscopy to take an image of the band structure
- Surface sensitive!
- Large single crystals (min. 1 mm²) that can be cleaved in UHV needed

Sorts photoelectrons by E_{kin} and emission angle θ

 $|k\downarrow|| = \sqrt{2m} / \hbar \sqrt{E\downarrow kin} \sin\theta$

E_B= ħω-φ-E_{kin}

THE PHOTOELECTRIC EFFECT

The three-step-model describes the photoelectric effect:

- 1. Excitation of the electron
- 2. Propagation to the surface (most limiting factor)
- 3. Transition into the vacuum

One-step-model is more "correct", but less intuitive...

THE PHOTOELECTRIC EFFECT - THE "UNIVERSAL" CURVE

Too low energy to exceed work function

Limiting factor is that electrons can leave the crystals, not how deep photons can enter

Too small BZ and - Small cross section (photons don't really kick electrons out)

Optimal range for ARPES

ENERGY CONVERSION:

Crystal Momentum k

Measured kinetic Energy Wanted: binding energy

 $E_i = \hbar \omega - \Phi - E_{kin}$

with E_{kin} : kinetic energy of the emitted electron Φ : work function E_i : initial state energy (negative binding energy) $\hbar\omega$: photon energy

The photoelectron has a certain momentum and kinetic energy: The energy reference for the binding energy is the Fermi level.

MOMENTUM CONVERSION:

Adjust: exit angle θ Wanted: momentum (K₁₁)

The photoelectron has a certain momentum and kinetic energy: Only the momentum component parallel to the surface is conserved.

 $|k\downarrow|| = \sqrt{2m} / \hbar \sqrt{E\downarrow kin} \sin\theta$

ENERGY DISTRIBUTION CURVES (EDCS)

Fermi level

Normal emission is an important position as here the Γ -points are located.

Fit of an EDC:

- Lorentz curve
- Fermi-Dirac Function
- Shirley Background

THE IMAGE WE GET OUT OF THE MACHINE

Analyzer usually contains a CCD camera nowadays, which allows to measure EDCs as a function of slit angle showing the band structure.

MEASURING THE FULL BZ

PLOTTING ALONG DIFFERENT DIRECTIONS

Cut along the slit angle

FERMI SURFACE PLOT

Constant energy plot - FS

695.5

K SPACE CONVERSION

 $E \downarrow B = E \downarrow F - E \downarrow kin$

 $k\downarrow x = \sqrt{2m} / \hbar \sqrt{E\downarrow kin} \sin\alpha \cos\theta$

 $k\downarrow y = \sqrt{2m} / \hbar \sqrt{E} \downarrow kin \sin\theta$

Constant energy plot - FS

K SPACE CONVERSION

 $k\downarrow x = \sqrt{2m} / \hbar \sqrt{E\downarrow kin} \sin\alpha \cos\theta$

Important: Constant angle slices are not constant k_{\parallel} slices \rightarrow interpolation between data points necessary Constant energy slices remain meaningful

FINALIZING YOUR DATA ANALYSIS

Usually k_x and k_y are defined along high symmetry lines \rightarrow rotate data cube after conversion

 $(k\downarrow x \mid k\downarrow y) = (\Box \cos \varphi \& -\sin \varphi \& \sin \varphi \& \cos \varphi)(k\downarrow x \mid k\downarrow y)$

ARPES DATA ANALYSIS - SUMMARY

Steps:

1. Find α -offset, θ -offset (Γ should be at (0/0)) and E_F

- find Γ through symmetry and sample geometry
- determine E_F by fitting to Fermi-Dirac function
- 2. Use conversion equations

 $E \downarrow B = E \downarrow F - E \downarrow kin$

 $k\downarrow x = \sqrt{2m} / \hbar \sqrt{E\downarrow kin} \sin\alpha \cos\theta$

 $k\downarrow y = \sqrt{2m} / \hbar \sqrt{E\downarrow kin} \sin\theta$

3. Rotate data cube to align high symmetry lines along k_x or k_y

 $(k\downarrow x \ | k\downarrow y \) = (\Box \cos\varphi \ \& -\sin\varphi \ \& \cos\varphi \)(k\downarrow x \ | k\downarrow y \)$

WHERE TO LOOK?

۲

Roald Hoffmann and Wolfgang Tremel: Phase transitions in square net compounds

Square Nets of Main Group Elements in Solid-State Materials

Wolfgang Tremel¹ and Roald Hoffmann*

Contribution from the Department of Chemistry and Materials Science Center, Cornell University, Ithaca, New York 14853. Received May 29, 1986

ZrSiS WOULD FULFILL ALL MY REQUIREMENTS

- Non toxic
- Only earth abundant elements
- Very stable in air and water
- Should be cleavable

ZINTL PHASES: COUNT ELECTRONS TO FIND NUMBER OF BONDS

- Number of bonds in Polyanions:
- b(xx) = 8(or18) VEC(x)

4+4+6 = 14 14 per Si b(Si-Si)=18-14 =4

BULK BAND STRUCTURE OF ZrSiS

- Huge range of linear dispersion
- Many Dirac cones around the Fermi level
- Line node!
- Get gapped by SOC, but SOC is small

Schoop, Ali, Straßer, Topp, Duppel, Parkin, Lotsch, Ast, Nat. Comm., 7, 11696 (2016)

MAKING THE SAMPLE

- Large crystals grown with vapor transport
- Cleaves well

 $T = 1100^{\circ}C$ $T = 900^{\circ}C$ $T = 900^{\circ}C$ $T = 300^{\circ}C$ $T = 200^{\circ}C$ $T = 200^{\circ}C$ $T = 200^{\circ}C$

$$Zr + Si + S \xrightarrow{I_2} ZrSiS$$

CHARACTERIZING THE SAMPLE

1) single crystal diffraction: R value of 2%

2) electron diffraction
3) High resolution TEM
4) Chemical analysis
5) STM topography

ARPES MEASUREMENTS

- Surface states appear
- Large liner dispersion visible

Schoop, Ali, Strasser, Topp, Duppel, Parkin, Lotsch, Ast, Nat. Comm., 7, 11696 (2016)

- Calculate a slab
- Perfect match between DFT and ARPES

SURFACE STATES?

GOING BEYOND ZrSiS

- The family of MXZ compounds with the same structure than ZrSiS hosts many more Dirac materials
- Nearly 200 more compounds to investigate
 - High tunability, lots of room for improvement!

М	Ζ	X											
		0	S	Se	Te	As	Sb						
Zr	Si	ZrSiO	ZrSiS	ZrSiSe	ZrSiTe								
	Ge		ZrGeS	ZrGeSe	ZrGeTe								
	Sn				ZrSnTe								
Hf	Si		HfSiS	HfSiSe	HfSiTe								
	Ge		HfGeS	HfGeSe	HfGeTe								
Nb	Si					NbSiAs	NbSiSb						
	Ge					NbGeAs	NbGeSb						
La	Sb				LaSbTe								
Ce					CeSbTe								
Pr					PrSbTe								
Nd					NdSbTe								
Sm					SmSbTe								
Gd					GdSbTe								

REALIZING NON-SYMMORPHIC SEMIMETALS

"conventional DSM"

Ζ

 E_F

Х

3*2+2*5 = 16 8 per As

Na₃Bi

3***1**+5 = 8

"non-symmorphic DSM"

Trivial insulator (even e⁻/site)

Non-trivial Dirac metal (odd e⁻/site)

- Require odd electron count (per formula unit)
- Chemically unstable!

 \mathbf{Y}

Gibson et al. Physical Review B 91 (20), 205128 (2015)

HOW TO TACKLE THIS CHALLENGE EXPERIMENTALLY?

Two steps:

(a) Can we experimentally verify that band degeneracies forced by NS-Symmetry exist below the Fermi level?

(b) After finding a model compound, can we move this degeneracy to the Fermi level?

STEP A: ZrSiS

• Space group P4/nmm

X point

MOVE NON-SYMMORPHIC CROSSING TO THE FERMI LEVEL?

- Family of MZX compounds
- Isoelectronic

0.6 E-E_F of non-symmorphic cones (eV) 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8

ZrSiTe:

• Non-symmorphic band degeneracy at the Fermi level

increasing uniaxial strain along the c axis

1: ZrSnTe 2: HfGeTe 3: HfGeS 4: ZrGeS 5: HfGeSe 6: ZrGeTe 7: ZrGeSe 8: ZrSiS 9: HfSiS 10: HfSiSe 11: ZrSiSe

BULK BAND STRUCTURE OF ZrSiTe

Topp, Lippmann, Varykhalov, Duppel, Lotsch, Ast, Schoop, New J Phys., 18, 125014 (2016)

ZrSiTe CRYSTAL GROWTH

- High temperature phase! Quench samples
- Crystals are air sensitive
- Cleaves with scotch tape

LEED at 120 V

[001]

ARPES ON ZrSiTe

ARPES ON ZrSiTe

1.0

Slab calculation (GGA + SOC)

Topp, Lippmann, Varykhalov, Duppel, Lotsch, Ast, Schoop, New J Phys., 18, 125014 (2016)

CAN WE USE CHEMISTRY IT MAKE WEYL SEMIMETALS?

ů	Se		Par	ma	gnet	ic .	Diamagnetic					ė	ē	Ň	ô	ř.	Ň
Na	Mg											A	10	P	S	ci	Å
Ř	č.	Se	ñ	Ŷ	Cr	Mn	ŕ.	ć	Ň	Ĉ,	Z.	Ġ.	Ğ.	Ås	54	6r	v.
я́ь	ŝ	Ϋ́	Žr	Nb	Mo	Te.	Ru	Rh	Pd	Åg	e d	in.	Sn.	Sb.		1	,
 C8	8a	La.	Ĥ	Ťa	ŵ	Re	08	lr.	p,	Au	Hg	T	Pb	÷.	Po	A	R
Ë,	Ra.	Ac	1														

WHAT ABOUT THE RARE EARTH COMPOUNDS? LnSbTe

Do the LnSbTe phases order magnetically?

М	Ζ	X											
		0	S	Se	Te	As	Sb						
Zr	Si	ZrSiO	ZrSiS	ZrSiSe	ZrSiTe								
	Ge		ZrGeS	ZrGeSe	ZrGeTe								
	Sn				ZrSnTe								
Hf	Si		HfSiS	HfSiSe	HfSiTe								
	Ge		HfGeS	HfGeSe	HfGeTe								
Nb	Si					NbSiAs	NbSiSb						
	Ge				$\langle \rangle$	NbGeAs	NbGeSb						
La	Sb				LaSbTe								
Ce					CeSbTe								
Pr					PrSbTe								
Nd					NdSbTe								
Sm					SmSbTe								
Gd					GdSbTe								

2.0 1.0 E-E_F(eV) 0.0 -1.0 -2.0 R М

LaSbTe

Simulation

Pnma [011]

CRYSTAL GROWTH OF CeSbTe

Simulation

Measurement

Schoop, Topp, Lippmann, Orlandi, Muechler, Vergniory, Sun, Rost, Duppel, Krivenkov, Sheoran, Manuel, Varykhalov, Yan, Kremer, Ast, Lotsch *submitted* (2017) arXiv:1707.03408

MAGNETIC PROPERTIES OF CeSbTe

Schoop, Topp, Lippmann, Orlandi, Muechler, Vergniory, Sun, Rost, Duppel, Krivenkov, Sheoran, Manuel, Varykhalov, Yan, Kremer, Ast, Lotsch *submitted* (2017) arXiv:1707.03408

MAGNETIC PROPERTIES OF CeSbTe

Schoop, Topp, Lippmann, Orlandi, Muechler, Vergniory, Sun, Rost, Duppel, Krivenkov, Sheoran, Manuel, Varykhalov, Yan, Kremer, Ast, Lotsch *submitted* (2017) arXiv:1707.03408

ANTIFERROMAGNETIC STRUCTURE OF CeSbTe

Intensity (arbs) 2

Schoop, Topp, Lippmann, Orlandi, Muechler, Vergniory, Sun, Rost, Duppel, Krivenkov, Sheoran, Manuel, Varykhalov, Yan, Kremer, Ast, Lotsch submitted (2017)

MAGNETIC PHASE DIAGRAM OF CeSbTe

Schoop, Topp, Lippmann, Orlandi, Muechler, Vergniory, Sun, Rost, Duppel, Krivenkov, Sheoran, Manuel, Varykhalov, Yan, Kremer, Ast, Lotsch *submitted* (2017) arXiv: 1707.03408

GROUP THEORY ANALYSIS

TRIMs :	A	R	X	M	Г	Z
PM (<i>P</i> 4/ <i>nmm</i>)	2-4	2-4	2-4	2-4	2	2
AFM ($P_c 4/ncc$)	4-8	2-4	2-4	2-4	2	2-4
FM(Pmm'n')	2	2	2	2	1-2	1-2
FM $(P4/nm'm')$	2-4	2	2	2-4	1-2	1-2
FM(Cm'ma)	1-2	2	1-2	1-2	1-2	1-2

Schoop, Topp, Lippmann, Orlandi, Muechler, Vergniory, Sun, Rost, Duppel, Krivenkov, Sheoran, Manuel, Varykhalov, Yan, Kremer, Ast, Lotsch *submitted* (2017) arXiv:1707.03408

APRES CONFIRMS BAND STRUCTURE OF PARAMAGNETIC PHASE

SUMMARY

• Square nets are a very rich playground for Dirac/Weyl physics!

Tune the electronic strucutre

Make it magnetic

THANK YOU!

- Bettina Lotsch
- Viola Duppel
- Christian Ast
- Carola Strasser
- Andreas Topp
- Judith Lippmann
- Andreas Rost
- Judith Lippmann
- Qingyu He
- Lihui Zhu
- Raquel Queiroz
- Andrey Varykhalov (Bessy)
- Steffen Wiedmann (HMFL)
- Nigel Hussey (HMFL)
- Lukas Muechler (Princeton)
- Maia Vergniory (DIPC)

