Transport in topological insulators

Jens Hjörleifur Bárðarson

1

Max Planck Institute PKS, Dresden KTH Royal Institute of Technology, Stockholm

Brief intro

Topological insulators are bulk insulators with metallic surface

The periodic table of topological insulators

Cartan	Т	С	S	Н	NLσM	Name	d=0	d=1	d=2	d=3
А	0	0	0	U(N)	U(2n)/ U(n)xU(n)	Unitary	\mathbb{Z}	0	Z	0
AIII	0	0	1	U(N+M)/ U(N)xU(M)	U(n)	Chiral Unitary	0	\mathbb{Z}	0	Z
AI	+1	0	0	U(N)/O(N)	Sp(2n)/ Sp(n)xSp(n)	Orthogonal	Z	0	0	0
BDI	+1	+1	1	O(N+M)/ O(N)xO(M)	U(2n)/Sp(2n)	Chiral orthogonal	\mathbb{Z}_2	Z	0	0
D	0	+1	0	SO(2N)	O(2n)/U(n)	BdG	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
DIII	-1	+1	1	SO(2N)/U(N)	O(2n)	BdG	0	\mathbb{Z}_2	\mathbb{Z}_2	Z
AII	-1	0	0	U(2N)/Sp(2N)	O(2n)/ O(n)xO(n)	Symplectic	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
CII	-1	-1	1	Sp(N+M)/ Sp(N)xSp(M)	U(2n)/O(2n)	Chiral symplectic	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
С	0	-1	0	Sp(2N)	Sp(2n)/U(n)	BdG	0	0	$2\mathbb{Z}$	0
CI	+1	-1	1	Sp(2N)/U(N)	Sp(2n)	BdG	0	0	0	$2\mathbb{Z}$

Ryu, Schneider, Furusaki, Ludwig NJP (2010), Ryu et al PRB, Kitaev ...

The periodic table of topological insulators

Cartan	Т	С	S	Н	NLσM	Name	d=0	d=1	d=2	d=3
А	0	0	0	U(N)	U(2n)/ U(n)xU(n)	Unitary	\mathbb{Z}	0	\mathbb{Z}	0
AIII	0	0	1	U(N+M)/ U(N)xU(M)	U(n)	Chiral Unitary	0	\mathbb{Z}	0	Z
AI	+1	0	0	U(N)/O(N)	Sp(2n)/ Sp(n)xSp(n)	Orthogonal	Z	0	0	0
BDI	+1	+1	1	O(N+M)/ O(N)xO(M)	U(2n)/Sp(2n)	Chiral orthogonal	\mathbb{Z}_2	Z	0	0
D	0	+1	0	SO(2N)	O(2n)/U(n)	BdG	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
DIII	-1	+1	1	SO(2N)/U(N)	O(2n)	BdG	0	\mathbb{Z}_2	\mathbb{Z}_2	Z
AII	-1	0	0	U(2N)/Sp(2N)	O(2n)/ O(n)xO(n)	Symplectic	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
CII	-1	-1	1	Sp(N+M)/ Sp(N)xSp(M)	U(2n)/O(2n)	Chiral symplectic	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
С	0	-1	0	Sp(2N)	Sp(2n)/U(n)	BdG	0	0	$2\mathbb{Z}$	0
CI	+1	-1	1	Sp(2N)/U(N)	Sp(2n)	BdG	0	0	0	$2\mathbb{Z}$

Ryu, Schneider, Furusaki, Ludwig NJP (2010), Ryu et al PRB, Kitaev ...

Symmetries — Wigner's theorem

Any symmetry acts as a unitary or antiunitary transformation in Hilbert space

- $\langle U\psi|U\phi\rangle = \langle\psi|\phi\rangle$ unitary U
- antiunitary T

$$\langle T\psi|T\phi
angle = \langle\psi|\phi
angle^*$$
 (anti-linear!)

Can always write T = UK with Kcomplex conjugation

 $T^2 = +1$

Time reversal symmetry — Examples

spinless fermions (or integral spin):

$$T = K \qquad T^2 = K^2 = 1$$

 $T\mathbf{x}T^{-1} = \mathbf{x}$ note: basis dependent!

$$T\mathbf{p}T^{-1} = K(-i\nabla)K = -\mathbf{p}$$

half-integral spin fermions:

$$T = i\sigma_y K \quad T^2 = (i\sigma_y K)(i\sigma_y K) = -\sigma_y^2 K^2 = -1$$
$$T \mathbf{x} T^{-1} = \mathbf{x}$$
$$T \mathbf{p} T^{-1} = K(-i\nabla) K = -\mathbf{p}$$
$$T \sigma T^{-1} = -\sigma$$

2D topological insulator

Topological insulators in the unitary class (A) — Quantum Hall effect

$$H = \frac{(\mathbf{p} - e\mathbf{A})^2}{2m} \qquad \qquad T = K \\ T\mathbf{p}T^{-1} = -\mathbf{p} \qquad \qquad THT^{-1} = \frac{(-\mathbf{p} - e\mathbf{A})^2}{2m} \neq H$$

 $\mathbf{B} = \nabla \times \mathbf{A}$

surface chiral — no backscattering

Landau levels

Topological insulators in the symplectic class (All) — Quantum spin Hall effect

$$H = v_F(p_x\sigma_x\tau_z + p_y\sigma_y) + \Delta_{SO}\sigma_z\tau_z s_z + \lambda_R(\sigma_x\tau_z\sigma_y - \sigma_y s_x)$$

 $T = i\tau_x s_y K \qquad T^2 = -1 \qquad THT^{-1} = H$

[T,V] = 0

 $\langle \psi | V | T \psi \rangle = \langle T \psi | T V | T \psi \rangle^* = \langle T \psi | V T | T \psi \rangle^* = - \langle T \psi | V | \psi \rangle^* = - \langle \psi | V | T \psi \rangle$ = 0

Absence of backscattering

$$G = \frac{2e^2}{h}$$

Quantum Spin Hall effect in HgTe quantum wells

11

 $V_3 = V$ $V_2 = 0$

Non-local conductance

$$I = I_1 = (V_1 - V_2) + (V_1 - V_4) = 2V_1 - V_4$$

$$0 = I_2 = (V_2 - V_1) + (V_2 - V_3) = -V_1 - V$$

$$0 = I_3 = (V_3 - V_2) + (V_3 - V_4) = 2V - V_4$$

$$-I = I_4 = (V_4 - V_3) + (V_4 - V_1) = 2V_4 - V - V_4$$

$$-I = I_4 = (V_4 - V_3) + (V_4 - V_1) = 2V_4 - V - V_1$$

Ex. Find the conductance in the H-bar

3D topological insulator

3D topological insulators

 $H_{\text{surface}} = \mathbf{p} \cdot \boldsymbol{\sigma}$

Scaling theory of localization

Scaling theory of localization

Conductance as transmission (Landauer)

$$|\psi\rangle = \begin{cases} \sum_{n} c_{n,L} |n\rangle_{L} + d_{n,L} |Tn\rangle_{L}, & x \leq 0, \\ \sum_{n} c_{n,R} |n\rangle_{R} + d_{n,R} |Tn\rangle_{R}, & x \geq L, \\ |\Psi\rangle, & 0 \leq x \leq L. \end{cases}$$

$$\begin{pmatrix} d_{\rm L} \\ d_{\rm R} \end{pmatrix} = S \begin{pmatrix} c_{\rm L} \\ c_{\rm R} \end{pmatrix} \qquad S = \begin{pmatrix} r & t' \\ t & r' \end{pmatrix} \qquad G = \frac{e^2}{h} \operatorname{Tr} t^{\dagger} t = \frac{e^2}{h} \operatorname{Tr} (1 - r^{\dagger} r)$$

18

Weak (anti) localization

$$r_{nm} = \sum_{\alpha} A_{\alpha} \mathrm{e}^{\mathrm{i} S_{\alpha}/\hbar}$$

$$g = N - \sum_{\alpha,\alpha'} A_{\alpha} A_{\alpha'}^* e^{i(S_{\alpha} - S_{\alpha'})/\hbar}$$

$$g_{\rm cl} = N - \sum_{\alpha} |A_{\alpha}|^2$$

$$\tilde{\alpha} = \mathcal{T}\alpha \quad \Rightarrow \quad S_{\tilde{\alpha}} = S_{\alpha}$$

$$|A_{\alpha}|^{2} + |A_{\tilde{\alpha}}|^{2} + 2\Re(A_{\alpha}A_{\tilde{\alpha}}^{*}) = ?$$

Spin-momentum locking and Berry's phase

Weak (anti) localization

$$r_{nm} = \sum_{\alpha} A_{\alpha} \mathrm{e}^{\mathrm{i} S_{\alpha}/\hbar}$$

$$g = N - \sum_{\alpha,\alpha'} A_{\alpha} A_{\alpha'}^* \mathrm{e}^{\mathrm{i}(S_{\alpha} - S_{\alpha'})/\hbar}$$

$$g_{\rm cl} = N - \sum_{\alpha} |A_{\alpha}|^2$$

$$\tilde{\alpha} = \mathcal{T}\alpha \quad \Rightarrow \quad S_{\tilde{\alpha}} = S_{\alpha}$$

$$|A_{\alpha}|^{2} + |A_{\tilde{\alpha}}|^{2} + 2\Re(A_{\alpha}A_{\tilde{\alpha}}^{*}) = \begin{cases} 4|A_{\alpha}|^{2}, & T^{2} = 1\\ 0, & T^{2} = -1 \end{cases}$$

Weak (anti) localization

$$t_{nm} = \sum_{\beta} A_{\beta} \mathrm{e}^{\mathrm{i} S_{\beta}/\hbar}$$

$$g = \sum_{\beta,\beta'} A_{\beta} A_{\beta'}^* e^{i(S_{\beta} - S_{\beta'})/\hbar}$$

Field theory of diffusion (nonlinear sigma model)

Scaling theory of localization — 2D

Absence of backscattering and perfectly transmitted mode

$$|\psi\rangle = \begin{cases} \sum_{n} c_{n,L} |n\rangle_{L} + d_{n,L} |Tn\rangle_{L}, & x \leq 0, \\ \sum_{n} c_{n,R} |n\rangle_{R} + d_{n,R} |Tn\rangle_{R}, & x \geq L, \\ |\Psi\rangle, & 0 \leq x \leq L. \end{cases}$$

$$S = \begin{pmatrix} r & t' \\ t & r' \end{pmatrix} \qquad \begin{pmatrix} d_{\rm L} \\ d_{\rm R} \end{pmatrix} = S \begin{pmatrix} c_{\rm L} \\ c_{\rm R} \end{pmatrix}$$

$$|\mathcal{T}\psi\rangle = \begin{cases} \sum_{n} c_{n,L}^* |\mathcal{T}n\rangle_{L} - d_{n,L}^* |n\rangle_{L}, & x \leq 0, \\ \sum_{n} c_{n,R}^* |\mathcal{T}n\rangle_{R} - d_{n,R}^* |n\rangle_{R}, & x \geq L, \\ |\mathcal{T}\Psi\rangle, & 0 \leq x \leq L, \end{cases}$$

$$\begin{pmatrix} c_{\rm L}^* \\ c_{\rm R}^* \end{pmatrix} = -S \begin{pmatrix} d_{\rm L}^* \\ d_{\rm R}^* \end{pmatrix} \qquad S^T = -S$$

25

Absence of backscattering and perfectly transmitted mode

Scaling theory of localization

Absence of localisation

JHB, Tworzydlo, Brouwer, Beenakker, PRL 2007 Nomura, Koshino, Ryu PRL 2007

Surface of a topological insulator can not be localized

 $\beta(\sigma)$ σ

Note: stronger condition than being gapless

JHB, Tworzydlo, Brouwer, Beenakker, PRL 2007 Nomura, Koshino, Ryu PRL 2007

Topology of energy bands

Symmetric spaces and topological terms

 $S = S[Q] \qquad \qquad Q \in O(2n)/O(n) \times O(n)$

Symmetric space with two disconnected components

Topological term gives a different sign in the action to different components

A topological insulator in d dimensions has a d-1 dimensional surface that can not be localized. The non-linear sigma model describing the surface correspondingly has a topological term

The periodic table of topological insulators

Cartan	Т	C	S	Н	NLσM	Name	d=0	d=1	d=2	d=3
А	0	0	0	U(N)	U(2n)/ U(n)xU(n)	Unitary	\mathbb{Z}	0	\mathbb{Z}	0
AIII	0	0	1	U(N+M)/ U(N)xU(M)	U(n)	Chiral Unitary	0	Z	0	Z
AI	+1	0	0	U(N)/O(N)	Sp(2n)/ Sp(n)xSp(n)	Orthogonal	\mathbb{Z}	0	0	0
BDI	+1	+1	1	O(N+M)/ O(N)xO(M)	U(2n)/Sp(2n)	Chiral orthogonal	\mathbb{Z}_2	Z	0	0
D	0	+1	0	SO(2N)	O(2n)/U(n)	BdG	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
DIII	-1	+1	1	SO(2N)/U(N)	O(2n)	BdG	0	\mathbb{Z}_2	\mathbb{Z}_2	Z
AII	-1	0	0	U(2N)/Sp(2N)	O(2n)/ O(n)xO(n)	Symplectic	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
CII	-1	-1	1	Sp(N+M)/ Sp(N)xSp(M)	U(2n)/O(2n)	Chiral symplectic	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
С	0	-1	0	Sp(2N)	Sp(2n)/U(n)	BdG	0	0	$2\mathbb{Z}$	0
CI	+1	-1	1	Sp(2N)/U(N)	Sp(2n)	BdG	0	0	0	$2\mathbb{Z}$

Weak topological insulators

 $(\nu_0, \boldsymbol{\nu})$ Strong and weak indices

Can think of as stacking of lower dimensional strong topological insulators

Does not localize unless average translation symmetry broken

Summary of lecture 1

Topological insulators characterized by a surface that doesn't localize

In 3D top. ins. disorder drives the surface into a symplectic metal, characterized by weak anti-localization

Topological insulator nanowires

Jens Hjörleifur Bárðarson

Max Planck Institute PKS, Dresden KTH Royal Institute of Technology, Stockholm

Surface of a 3D topological insulator is a supermetal

$$H = p_x \sigma_x + p_y \sigma_y + V(\mathbf{r})$$

Topological insulator nanowires host various interesting modes

Perfectly transmitted mode

Chiral modes

Majorana modes

Dirac fermion on a curved surface

$$H = p_x \sigma_x + p_y \sigma_y$$
$$\psi(\theta + 2\pi) = -\psi(\theta)$$

$$\delta_W = \frac{\hbar v_F 2\pi}{W} = 6 \text{ meV}$$
_{@380 nm}

JHB, Brouwer, Moore PRL 2010

Ran, Vishwanath, Lee PRL 2008; Rosenberg, Guo, Franz PRB(R) 2010; Ostrovsky, Gornyi, Mirlin PRL 2010

Aharonov-Bohm flux modifies spectrum

From even to odd — the perfectly transmitted mode emerges

 $S^T = -S$ $r^T = -r$ $THT^{-1} = H$ $\det r = (-1)^N \det r$ \Rightarrow $T^2 = -1$ $G \ge \frac{e^2}{h}$ N odd

Ando, Suzuura J. Phys. Soc. Jpn. 2002; JHB, Brouwer, Moore PRL 2010; JHB J. Phys. A: Math. Theor. 2008

Number of modes depends on energy and flux

Number of modes

Energy

Conductance vs. chemical potential

Experimental status

S. Cho,...,N. Mason, Nature Comm. 2015

L. Jauregui,...,Y.P. Chen, Nature Nanotechnol. 2016

Dufouleur, Veyrat, Xypakis, JHB,..., Giraud Sci. Rep. 2017

Topological insulator nanowires host various interesting modes

Perfectly transmitted mode

Chiral modes

Majorana modes

Going chiral...

F. de Juan, R. Ilan, **JHB**, PRL 2014 Lee PRL 2009; Sitte et al PRL 2012

Conductance vs. chemical potential @ B = 2T

Conductance vs. magnetic field at $\mu = 10 \text{ meV}$

Topological insulator nanowires host various interesting modes

Perfectly transmitted mode

Chiral modes

Majorana modes

Kitaev chain

$$H = -\mu \sum_{j} c_{j}^{\dagger} c_{j} - \frac{1}{2} \sum_{i} (t c_{j}^{\dagger} c_{j+1} + \Delta e^{i\phi} c_{j} c_{j+1} + \text{H.c.})$$

$$c_{j} = \frac{e^{-i\phi/2}}{2} (\gamma_{B,j} + i\gamma_{A,j}) \qquad \gamma_{\alpha,j} = \gamma_{\alpha,j}^{\dagger} \qquad \{\gamma_{\alpha,j}, \gamma_{\alpha',j'}\} = 2\delta_{\alpha,\alpha'}\delta_{j,j'}$$

$$\mu < 0; t = \Delta = 0$$
 $H = -\frac{\mu}{2} \sum_{j+1}^{N} (1 + i\gamma_{B,j}\gamma_{A,i})$

$$\mu = 0; t = \Delta \neq 0$$
 $H = -i\frac{t}{2}\sum_{j=1}^{N-1} \gamma_{B,j}\gamma_{A,j+1}$

$$f = \frac{1}{2}(\gamma_{A,1} + i\gamma_{B,N})$$
$$f|0\rangle = 0 \qquad f^{\dagger}|0\rangle$$

twofold degenerate ground state

A recipe for a tunable topological superconductor

Detecting topological superconductivity via Béri degenercay

$$\begin{split} \sigma_x H^* \sigma_x &= -H \\ r^{\dagger} r &= 1 \end{split} \xrightarrow{N=1}^{N=1} r_{ee} r_{he}^* = 0 \implies \begin{cases} |r_{ee}| = 1 & G = 0 \\ |r_{he}| = 1 & G = \frac{2e^2}{h} \end{cases} \text{ topological} \end{split}$$

Béri PRB 2009; Wimmer, Akhmerov, Dahlhaus, Beenakker NJP (2011)

Getting to the single mode regime

Chiral mode

F. de Juan, R. Ilan, JHB, PRL 2014

NS Conductance vs. chemical potential

Majorana interferometer

F. de Juan, R. Ilan, JHB, PRL 2014

Fu and Kane, PRL (2009), Akhmerov, Nilsson, and Beenakker PRL (2009)

SNS and p-n junctions

Ilan, JHB, Sim, Moore NJP 2014 Ilan, de Juan, Moore PRL 2015

Topological insulator nanowires host various interesting modes

JHB, Brouwer, Moore PRL 2010; Ilan, JHB, Sim, Moore NJP 2014; F. de Juan, R. Ilan, JHB, PRL 2014 Review: JHB and Moore, Rep. Prog. Phys. 2013