

Erwann Bocquillon

Topological insulators & topological superconductivity in HgTe heterostructures

Topological Matter School 25/08/2017

Physikalisches Institut (EP3) Universität Würzburg, Am Hubland, D-97074 Würzburg http://www.physik.uni-wuerzburg.de/EP3/

Erwann Bocquillon

Topological insulators & topological superconductivity in HgTe heterostructures

Topological Matter School 25/08/2017

Laboratoire Pierre Aigrain Ecole Normale Supérieure 24 rue Lhomond, 75231 Paris Cedex 05 France <u>www.lpa.ens.fr</u>

UNI

WŰ

People involved

Uni. Würzburg

- D. Mahler, A. Budewitz, K. Bendias,
- S. Hartinger
- Staff : C. Brüne
 - H. Buhmann
 - L.W. Molenkamp
- Invited : T.M. Klapwijk
- Theory : F. Domínguez, E.M. Hankiewicz

European Research Council Established by the European Commission

Unterstützt von / Supported by

RIKEN, Tōkyō ► R.S. Deacon, K. Ishibashi, S. Tarucha

Alexander von Humboldt Stiftung/Foundation

Outline

I. HgTe as a topological material

- A. Basics of HgCdTe compounds
- B. HgTe quantum wells
- C. 3D layers & strain engineering

II. Search for topological superconductivity in HgTe

- A. Foreword on topological superconductivity
- B. Physics of a Josephson junction
- C. Search for gapless ABS in topological JJs
- D. Induced superconductivity in S-N junctions

Part I - Topological phases in HgTe

- A. Basics of HgCdTe compounds
- B. HgTe quantum wells
- C. 3D layers & strain engineering

Group- ↓Period	→ 1 1	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 H																		2 He	
2	3 Li	4 Be												5 B	6 C	7 N	8 0	9 F	10 Ne	
3	11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
4	19 K	20 Ca	21 Sc		22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
5	37 Rb	38 Sr	39 Y		40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	
6	55 Cs	56 Ba	57 La	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	7 8 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn	
7	87 Fr	88 Ra	89 Ac	*	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og	
				*	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
				*	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		

II-VI semiconductors with ZnS structure (2 fcc with tetrahedral coordination)

- ▷ heavy + strong SOC \Rightarrow strong relativistic corrections
- ▷ different lattice constants (0.3%) \Rightarrow strain !

 $a_{\text{HgTe}} = 0.646 \,\text{nm}$ $a_{\text{CdTe}} = 0.648 \,\text{nm}$

UN

UNI WÜ

I-A. Basics of HgTe

Band crossing at the interface : topological states !
 HgTe is a semi-metal

UNI WÜ

Topological Matter School - 25/08/2017

Gap from quantum confinement

- narrow 2D quantum wells (<15 nm)</p>
- 2D topological insulator
- QSH and QAH systems

Gap from strain

- ▷ thick 3D layers (50 -150 nm)
- 3D topological insulator
- Weyl/Dirac semi-metals

A few side remarks :

- R Hg_{0.3}Cd_{0.7}Te often used instead of pure CdTe (gap 0.9 eV)
- Important role of mass-velocity correction ! Hg much heavier than Cd !

® surface states known since the 70s (works of Volkov-Pankratov)

UNI

I-B. Quantum wells

Topological phase transition

- ▷ trivial if $d < d_c$ (normal order $H_1 < E_1$)
- ▷ QSH if $d > d_c \approx 6.3$ nm (H₁>E₁)

Bernevig *et al.*, Science **314**, 1757 (2006) König *et al.*, Science **318**, 766 (2007)

Topological Matter School - 25/08/2017

I-B. Quantum wells

Topological phase transition

- ▷ trivial if $d < d_c$ (normal order $H_1 < E_1$)
- ▷ QSH if $d > d_c \approx 6.3$ nm (H₁>E₁)

Bernevig *et al.*, Science **314**, 1757 (2006) König *et al.*, Science **318**, 766 (2007)

Erwann Bocquillon

UNI

WÛ

Topological Matter School - 25/08/2017

UNI WÜ

I-B. Quantum wells

HgCdTe, x=0.7, 25nm HgCdTe : I, 9 nm HgCdTe, 10 nm HgTe well, 8,0 nm HgCdTe, 10 nm HgCdTe : I, 9 nm HgCdTe : I, 9 nm GdTe buffer ca.60 nm CdTe buffer ca.60 nm		
HgCdTe : I, 9 nm HgCdTe, 10 nm HgTe well, 8,0 nm HgCdTe, 10 nm HgCdTe : I, 9 nm HgCdTe, x=0.7,100 nm CdTe buffer ca.60 nm CdZnTe (001) substrate ca. 800 µm	HgCdTe, x=0.7, 25nm	
HgCdTe, 10 nm HgTe well, 8,0 nm HgCdTe, 10 nm HgCdTe : I, 9 nm HgCdTe, x=0.7,100 nm CdTe buffer ca.60 nm CdZnTe (001) substrate ca. 800 µm	HgCdTe:I,9 nm	
HgTe well, 8,0 nm HgCdTe, 10 nm HgCdTe : I, 9 nm HgCdTe, x=0.7,100 nm CdTe buffer ca.60 nm CdZnTe (001) substrate ca. 800 µm	HgCdTe, 10 nm	
HgCdTe, 10 nm HgCdTe : I, 9 nm HgCdTe, x=0.7,100 nm CdTe buffer ca.60 nm CdZnTe (001) substrate ca. 800 µm	HgTe well, 8,0 nm	
HgCdTe : I, 9 nm HgCdTe, x=0.7,100 nm CdTe buffer ca.60 nm CdZnTe (001) substrate ca. 800 µm	HgCdTe, 10 nm	
HgCdTe, x=0.7,100 nm CdTe buffer ca.60 nm CdZnTe (001) substrate ca. 800 µm	HgCdTe:I,9 nm	
CdTe buffer ca.60 nm CdZnTe (001) substrate ca. 800 µm	HgCdTe, x=0.7,100 nm	
CdZnTe (001) substrate ca. 800 µm	CdTe buffer ca.60 nm	
	CdZnTe (001) substrate ca. 800 µm	

Figures of merit

- ▶ MBE growth \Rightarrow huge mobility $\mu \approx 3-5 \ 10^5 \ cm^2 V^{-1} s^{-1}$
- ▷ low defect density ⇒ bulk insulating
- small gap ~ 20-25 meV strain engineering yields 40 meV

P. Leubner *et al.*, PRL **117**, 86403 (2016)

UNI I-B. Quantum wells

Observations

- ▷ conductance quantization (on max. 10 µm)
- non-local transport
- ▷ spin transport
- scanning SQUID imaging
- topological superconductivity?

M. König *et al.*, Science **318**, 766 (2007)
A. Roth *et al.*, Science **325**, 294 (2009)
C. Brüne *et al.*, Nat. Physics **8**, 485 (2012)
K.C. Nowack *et al.*, Nat. Materials **12**, 787 (2013)
M.K. Bendias *et al.*, submitted (2017)

Open questions - Robustness of edge states and topological properties

 \Rightarrow Why only 10 μm in transport ? Why not affected by bandgap ?

Disorder ? charge puddles ?

J. I. Väyrynen *et al.*, PRL **110**, 216402 (2013)

Coulomb interactions ?

C. Wu *et al.*, PRL **96**, 106401 (2006) G. Dolcetto *et al.*, Nuevo Cimento **39**, 113 (2015)

UNI I-B. Quantum wells

Open questions - Robustness of edge states and topological properties

 \Rightarrow Why only 10 μm in transport ? Why not affected by bandgap ?

Disorder ? charge puddles ?

Coulomb interactions ?

C. Wu *et al.*, PRL **96**, 106401 (2006) G. Dolcetto *et al.*, Nuevo Cimento **39**, 113 (2015)

A long list of mechanisms that lead to backscattering...

[1] J. Maciejko *et al.*, PRL **102**, 256803 (2009)
[2] A. Ström *et al.*, PRL **104**, 256804 (2010)
[3] F. Crépin *et al.*, PRB **86**, 121106 (2012)
[4] T. L. Schmidt *et al.*, PRL **108**, 156402 (2012)

- [5] F. Geissler *et al.*, PRB **89**, 235136 (2014)
- [6] J. I. Väyrynen et al., PRL **110**, 216402 (2013)
- [7] J. I. Väyrynen et al., PRB 90, 115309 (2014)
- [8] S. Essert et al., PRB 92, 205306 (2015)

Erwann Bocquillon

I-B. QAH effect in HgTe - Theory

C.-X. Liu et al., PRL 101, 146802 (2008)

Mn-doped HgTe quantum wells

- ▶ Mn²⁺ doping (0.5 to 4 %)
 ⇒ isoelectric, paramagnetic
- \triangleright 2 spin splittings with opposite signs $G_E, G_H \propto \langle S \rangle$
- spin polarization

$$\langle S \rangle = -\frac{5}{2} B_{5/2} \left(\frac{5}{2} \frac{g_{\mathrm{Mn}} \mu_B B}{k_B (T+T_0)} \right)$$

UNI

I-B. QAH effect in HgTe - Experiment

(almost) normal QH effect in n-type regime

- ▷ early onset of v=-1 plateau ~70 mT (@ 30 mK)
- $\triangleright~{\rm from}~{\rm T}$ dependence, $\langle S \rangle \simeq 0.1~{\rm at}~{\rm transition}$

Budewitz et al., arXiv 1706.05789 (2017)

Topological Matter School - 25/08/2017

UNI

I-C. Straining HgTe 3D layers

Strained HgTe

- ▷ band inversion between Γ_6 - Γ_8 ⇒ topological surface states
- ▷ strain \Rightarrow bulk band gap between Γ_8 subbands(20 meV)

Fu et al., PRB 76, 045302 (2007)

Topological Matter School - 25/08/2017

UNI

I-C. Straining HgTe 3D layers

Strained HgTe

- ▷ band inversion between Γ_6 - Γ_8 ⇒ topological surface states
- ▷ strain \Rightarrow bulk band gap between Γ_8 subbands(20 meV)

Fu et al., PRB 76, 045302 (2007)

Topological Matter School - 25/08/2017

UNI

WÜ

I-C. Straining HgTe 3D layers

Strained HgTe

- ▷ band inversion between Γ_6 - Γ_8 ⇒ topological surface states
- ▷ strain \Rightarrow bulk band gap between Γ_8 subbands(20 meV)

Fu et al., PRB 76, 045302 (2007)

Topological Matter School - 25/08/2017

UNI

WÜ

I-C. QH effect in strained HgTe

Layer structure

UNI

WÛ

- HgTe (70 to 90 nm) on CdTe substrate
- Au gate on
 SiO₂/Si₃N₄ multilayer

Quantum Hall effect

- ▷ electron density $n \sim 1 - 10 \times 10^{11} \,\mathrm{cm}^{-2}$
- QHE visible

Brüne *et al.*, PRL **106**, 126803 (2011) Brüne *et al.*, PRX **4**, 041045 (2014)

Erwann Bocquillon

UNI I-C. Odd integer sequence

▷ Degenerate Dirac cones

$$\nu = 2\left(n + \frac{1}{2}\right), n \in \mathbb{Z}$$

- \Rightarrow odd integers only
- ▷ only if densities equal
 ⇒ 1 value of V_g

Topological Matter School - 25/08/2017

UNI I-C. Odd/even sequences

Different densities

 $\nu = n_1 + n_2 + 1, n_1, n_2 \in \mathbb{Z} \implies v=2$ reappears

Identification of 2 surfaces : - broadening of SdH oscillations

- gate influence on peak positions

I-C. Tracing Landau levels

▷ max. of
$$\frac{\partial R_{xy}}{\partial B}$$

UNI WÜ

I-C. Tracing Landau levels

▷ max. of
$$\frac{\partial R_{xy}}{\partial B}$$

- how do surfaces/bulk exchange charge ?
- screening of the bulk by TSS ? (gating?)
- connect to one surface only ?

UNI

WÜ

I-C. Compressive strain in 3D HgTe

UNI WÜ

I-C. Compressive strain in 3D HgTe

HgTe

Tensile strain in HgTe

UNI WÜ

I-C. Compressive strain in 3D HgTe

Compressive strain in HgTe

I-C. Dirac/Weyl points in HgTe

2 Dirac/Weyl points (degeneracy lifted by BIA)

- anticrossing of TSS states
- R tiny energy scales!

J. Ruan et al., Nature Comm. 7, 11136 (2016)

DFT calculations : D. Di Sante, G. Sangiovanni, R. Thomale and E.M. Hankiewicz (Würzburg)

I-C. Strain engineering

Virtuel substrates

- superlattice with:
 - 1 layer of Cd_{0.5}Zn_{0.5}Te
 - x layers of CdTe
- effective lattice parameter

$$a_{\rm eff} = a_{\rm CdTe} \left(1 + \frac{f}{1 + mr} \right)$$

- f lattice mismatch
- m stiffness ratio
 - r thickness ratio
- $a_{\mathrm{HgTe}} = 0.646 \,\mathrm{nm}$
- $a_{\rm CdTe} = 0.648 \,\mathrm{nm}$
- $a_{\rm ZnTe} = 0.610 \,\mathrm{nm}$

UNI

WU

P. Leubner *et al.*, PRL **117**, 86403 (2016)

I-C. Strain engineering

P. Leubner et al., PRL 117, 86403 (2016)

Virtuel substrates

- superlattice with:
 - 1 layer of Cd_{0.5}Zn_{0.5}Te
 - x layers of CdTe
- effective lattice parameter

$$a_{\rm eff} = a_{\rm CdTe} \left(1 + \frac{f}{1 + mr} \right)$$

- f lattice mismatch
- m stiffness ratio
 - r thickness ratio
- $a_{\mathrm{HgTe}} = 0.646 \,\mathrm{nm}$
- $a_{\rm CdTe} = 0.648 \,\mathrm{nm}$
- $a_{\rm ZnTe} = 0.610 \,\mathrm{nm}$

UNI

Summary of Part I

Versatility of HgTe platform

- several topological systems possible:
 2D/3D TIs, Weyl semi-metal, QAH/QH/QSH + core-shell NW
- ▶ high quality samples: mobility µ ≈ 3-5 10⁵ cm²V⁻¹s⁻¹ insulating bulk

UNI

Summary of Part I

Versatility of HgTe platform

- several topological systems possible:
 2D/3D TIs, Weyl semi-metal, QAH/QH/QSH + core-shell NW
- ▶ high quality samples: mobility µ ≈ 3-5 10⁵ cm²V⁻¹s⁻¹ insulating bulk

Ready for topological quantum computing ?

- reproducible results & easily scalable (large MBE-grown layers)
- robust topological states
 - → topological protection (QSH) ? band engineering?
- complex systems with coexisting topological phases :
 - → Weyl semi-metal + TSS

UNI

- A. Foreword on topological superconductivity
- B. Physics of a Josephson junction
- C. Search for gapless ABS in topological JJs
- D. Induced superconductivity in S-N junctions

UNI

II-A. Topological superconductivity

UNI

WÛ

Topological Matter School - 25/08/2017

Cooper pair of helical Dirac fermions

- \Rightarrow helical pairing
- \Rightarrow *p*-type correlations

J. Alicea, Rep. Prog. Phys. **75**, 076501 (2012) C.W.J. Beenakker, Annu. Rev. Condens. Matter Phys. **4**, 113 (2013) V. Mourik *et al.*, Science **336**, 1003 (2012)

S. M. Albrecht et al., Nature 531, 206 (2016)

Gothenburg - 11/08/2017

Erwann Bocquillon

UNI

Wι

Cooper pair of helical Dirac fermions

- \Rightarrow helical pairing
- $\Rightarrow p$ -type correlations

 $\frac{1}{2}(c+c^{\dagger})$

J. Alicea, Rep. Prog. Phys. **75**, 076501 (2012) C.W.J. Beenakker, Annu. Rev. Condens. Matter Phys. **4**, 113 (2013) V. Mourik *et al.*, Science **336**, 1003 (2012)

S. M. Albrecht et al., Nature 531, 206 (2016)

Gothenburg - 11/08/2017

Erwann Bocquillon

UNI

WĹ

Cooper pair of helical Dirac fermions

- \Rightarrow helical pairing
- \Rightarrow *p*-type correlations

 $\frac{1}{2}(c+c^{\dagger})$

J. Alicea, Rep. Prog. Phys. **75**, 076501 (2012) C.W.J. Beenakker, Annu. Rev. Condens. Matter Phys. **4**, 113 (2013)

V. Mourik *et al.*, Science **336**, 1003 (2012)
S. M. Albrecht *et al.*, Nature **531**, 206 (2016)

Gothenburg - 11/08/2017

Erwann Bocquillon

UN

Cooper pair of helical Dirac fermions

- \Rightarrow helical pairing
- $\Rightarrow p$ -type correlations

Sayonara fermions ?

J. Alicea, Rep. Prog. Phys. **75**, 076501 (2012) C.W.J. Beenakker, Annu. Rev. Condens. Matter Phys. **4**, 113 (2013)

V. Mourik *et al.*, Science **336**, 1003 (2012) ... S. M. Albrecht *et al.*, Nature **531**, 206 (2016)

Erwann Bocquillon

Gothenburg - 11/08/2017

Cooper pair of helical Dirac fermions

- \Rightarrow helical pairing
- $\Rightarrow p$ -type correlations

Sayonara fermions ?

J. Alicea, Rep. Prog. Phys. **75**, 076501 (2012) C.W.J. Beenakker, Annu. Rev. Condens. Matter Phys. **4**, 113 (2013) V. Mourik *et al.*, Science **336**, 1003 (2012)
S. M. Albrecht *et al.*, Nature **531**, 206 (2016)

Erwann Bocquillon

Gothenburg - 11/08/2017

Josephson junctions

- ▷ 2 superconductors S_j $\Psi_j = \sqrt{n_j} e^{i\phi_j}, j = 1, 2$
- coupling through weak link : N/I/F/TI

UNI

WÛ

Josephson junctions

- ▷ 2 superconductors S_j $\Psi_j = \sqrt{n_j} e^{i\phi_j}, j = 1, 2$
- coupling through weak link : N/I/F/TI

Josephson junctions

- ▷ 2 superconductors S_j $\Psi_j = \sqrt{n_j} e^{i\phi_j}, j = 1, 2$
- coupling through weak link : N/I/F/TI

Josephson junctions

- ▷ 2 superconductors S_j $\Psi_j = \sqrt{n_j} e^{i\phi_j}, j = 1, 2$
- coupling through weak link : N/I/F/TI

Josephson equations

- ▷ phase evolution $\frac{d\phi}{dt} = \frac{2eV}{\hbar}$
- current-phase relation $I_S(\phi) = I_c \sin \phi$

UNI

WŰ

Josephson junctions

- ▷ 2 superconductors S_j $\Psi_j = \sqrt{n_j} e^{i\phi_j}, j = 1, 2$
- coupling through weak link : N/I/F/TI

Josephson equations

▷ phase evolution $\frac{d\phi}{dt} = \frac{2eV}{\hbar}$

 $\mathsf{P} \text{ current-phase relation} \\ I_S(\phi) = I_c \sin \phi$

 \Rightarrow supercurrent (I \neq 0 for V=0) for I<I_c with constant ϕ

finite voltage for I>Ic and ϕ time dependent (Josephson frequency)

UNI

II-B. Andreev reflections

Conditions

- two-electron process
- ▷ energy/momentum conservation ⇒ retro-reflection (exact at E_F)

 $E_F + \delta E \rightarrow E_F - \delta E$

- $\mathbf{k}_F + \delta \mathbf{k} \rightarrow \mathbf{k}_F \delta \mathbf{k}$
- ▷ phase coherence ⇒ phase shift at interface $\delta \phi - \phi + \alpha F$

$$\delta \phi = \phi + \arccos \frac{E}{\Delta}$$

▷ spin conservation $\uparrow \rightarrow \uparrow$

UN II-B. Andreev reflections Wί

Conditions

- two-electron process
- energy/momentum conservation \Rightarrow retro-reflection (exact at E_F)

 $E_F + \delta E \rightarrow E_F - \delta E$

- $\mathbf{k}_F + \delta \mathbf{k} \rightarrow \mathbf{k}_F \delta \mathbf{k}$
- phase coherence \Rightarrow phase shift at interface $\delta \phi = \phi + \arccos \frac{E}{\Delta}$

$$\phi = \phi + \operatorname{arccos} \frac{1}{2}$$

spin conservation $\uparrow \rightarrow \uparrow$

II-B. Andreev reflections

Conditions

- two-electron process
- ▷ energy/momentum conservation ⇒ retro-reflection (exact at E_F)

 $E_F + \delta E \rightarrow E_F - \delta E$

- $\mathbf{k}_F + \delta \mathbf{k} \rightarrow \mathbf{k}_F \delta \mathbf{k}$
- phase coherence
 - \Rightarrow phase shift at interface

$$\delta \phi = \phi + \arccos \frac{E}{\Delta}$$

▷ spin conservation $\uparrow \rightarrow \uparrow$

- R normal reflections if imperfect interface
- P. Adroguer et al., PRB 82, 81303 (2010)
- R specular reflections possible in Dirac materials if $E_F \ll \Delta$ C. W. J. Beenakker, PRL 97 (2006)

II-B. Andreev bound states

II-B. Andreev bound states

ABS spectrum

▷ resonant cavity

scattering formalism
 S_A Andreev reflection
 S_N scattering in N region

▷ resonance condition $det(I - r_A^{(2)}S_N^h r_A^{(1)}S_N^e) = 0$

UNI

WÛ

II-B. Conventional Andreev Bound States

Conventional ABS

- 1 pair of gapless states
- spin degeneracy
- connected to continuum
- ▷ avoided crossing at E=0 for D≠1

$$E(\phi) = \sqrt{1 - D\sin^2\frac{\phi}{2}}$$

II-B. Gapless Andreev Bound States

Topological gapless ABS

- 1 pair of gapless states
- ▷ no spin degeneracy
- disconnected from continuum for D≠1
- protected crossing at E=0
- « hybridized Majorana states »

$$E(\phi) = \sqrt{D}\cos\frac{\phi}{2}$$

UNI

WÛ

Josephson equations

$$\frac{d\phi}{dt} = \frac{2eV}{\hbar}$$
$$I(\phi) = \sum_{n} \frac{\partial E_n}{\partial \phi} \left(1 - 2f(E_n)\right)$$

Josephson equations

$$\frac{d\phi}{dt} = \frac{2eV}{\hbar}$$
$$I(\phi) = \sum_{n} \frac{\partial E_n}{\partial \phi} \left(1 - 2f(E_n)\right)$$

$$I_S(\phi) = I_c \sin \phi$$

$$\Rightarrow \text{Josephson frequency } f_J = \frac{2eV}{\hbar}$$

Josephson equations

$$\frac{d\phi}{dt} = \frac{2eV}{\hbar}$$
$$I(\phi) = \sum_{n} \frac{\partial E_n}{\partial \phi} \left(1 - 2f(E_n)\right)$$

$$I_S(\phi) = I_c \sin \phi$$

$$\Rightarrow \text{ Josephson frequency } f_J = \frac{2eV}{\hbar}$$

Fractional Josephson effect

$$\sin\phi \to \sin\phi/2$$
$$f_{\rm J} \to f_{\rm J}/2$$

Josephson equations

$$\frac{d\phi}{dt} = \frac{2eV}{\hbar}$$
$$I(\phi) = \sum_{n} \frac{\partial E_n}{\partial \phi} \left(1 - 2f(E_n)\right)$$

$$I_S(\phi) = I_c \sin \phi$$

$$\Rightarrow \text{ Josephson frequency } f_J = \frac{2eV}{\hbar}$$

Fractional Josephson effect

$$\sin \phi \to \sin \phi/2$$
$$f_{\rm J} \to f_{\rm J}/2$$

Detection

- 'listening' to Josephson emission
- beatings with ac excitation (Shapiro steps)

UN

WĹ

R Many parasitic effects !

- ▷ 2π bulk states $\Rightarrow 2\pi/4\pi$ mixture
- ▷ finite lifetime/continuum $\Rightarrow 2\pi$ -periodicity restored
- ▷ interactions \Rightarrow 8 π -periodicity
- ▷ Landau-Zener transitions $\Rightarrow 4\pi$ -periodicity

Pikulin *et al.*, PRB **86**, 140504 (2012) Badiane *et al.*, CRP **14**, 840 (2013) Zhang *et al.*, PRL **113**, 036401 (2014) Peng *et al.*, PRL **117**, 267001 (2016) Hui *et al.*, PRB **95**, 014505 (2017)

UNI

WU

II-B. Quantum spin Hall junctions

Josephson junctions

- ▷ µ≃3 10⁵ cm²V⁻¹s⁻¹
- Al contacts (in situ)
- ▷ HfO₂ /Au gate
- no overlap of edge states

 $L \ll l \qquad L \lesssim \xi$

II-B. Quantum spin Hall junctions

Josephson junctions

- ▷ µ≃3 10⁵ cm²V⁻¹s⁻¹
- Al contacts (in situ)
- ▷ HfO₂ /Au gate
- no overlap of edge states
- ballistic / intermediate

 $L \ll l \qquad L \lesssim \xi$

UNI

WÜ

II-B. First properties of HgTe JJs

I-V curve

- weak hysteresis visible
- excess current
 - \Rightarrow Andreev reflections

Gate dependence

- ▷ 3 regimes : p, n, and QSH
- asymmetry between n and p

Blonder et al., PRB 25, 4515 (1982)

Interference patterns

Interference patterns

UNI

WÛ

- ▶ non-uniform phase $\phi \rightarrow \phi + \frac{2\pi BL}{\Phi_0} y$
- ▷ « interference » pattern

Standard patterns

Fraunhofer pattern
 ⇔ uniform supercurrent

SQUID⇔ edge currents

Hart et al., Nat. Phys. 10, 638 (2014)

Topological Matter School - 25/08/2017

Anomalous interference patterns

Detection setup

voltage bias
 shunt resistance R_s
 current resistance R

rf amplification setup
 1 cryo amp. (+ 2 amps at RT)
 0.1 fW (-130 dBm) in 8 MHz

Topological Matter School - 25/08/2017

Emission spectra

- voltage V swept
- integrated power at f_d=3 GHz
 (in 8 MHz bandwidth)

- trivial QW : signal at fd=fJ
- ▷ topological QW : at $f_d=f_J$ and $f_J/2$

Deacon et al., submitted, ArXiv 1603.09611 (2016)

Topological Matter School - 25/08/2017

UNI

WÛ

Frequency dependence

UNI

WÜ

▷ f_J =2eV/h

- > Stronger $f_J/2$ signal at low frequencies
- \triangleright Relative intensities of f_J/2 and f_J depending on V_g

Gate voltage dependence

Low frequency $f_d = 3 \text{ GHz}$

Gate voltage dependence

RSJ model : DC current bias

Josephson/RSJ equations

$$\stackrel{\flat}{\phi} = \frac{2eV}{\hbar} I = I_S(\phi) + \frac{\hbar}{2eR}\dot{\phi} I_S(\phi) = I_{4\pi}\sin\frac{\phi}{2} + I_{2\pi}\sin\phi + \dots$$

Stewart, APL **12**, 277 (1968) McCumber, J. App. Phys. **39**, 3113 (1968)

UNI

WÜ

RSJ model : DC current bias

Josephson/RSJ equations

$$\dot{\phi} = \frac{2eV}{\hbar}$$
$$I = I_S(\phi) + \frac{\hbar}{2eR}\dot{\phi}$$
$$I_S(\phi) = I_{4\pi}\sin\frac{\phi}{2} + I_{2\pi}\sin\phi + \dots$$

Stewart, APL **12**, 277 (1968) McCumber, J. App. Phys. **39**, 3113 (1968)

Motion of fictitious particle

- $^{\triangleright} \partial_{\phi} U(\phi) = I_S(\phi) I$
- $\label{eq:constant} \begin{array}{l} \triangleright \text{ Zero-voltage state } I < I_c \\ \phi = \mathrm{C^{st}} & \longleftrightarrow \text{ particle trapped} \end{array}$

▷ Voltage state
$$I > I_c$$
 $\phi \nearrow \longleftrightarrow$ particle falling down

UN

WU

I-V curve from RSJ model

$$\overline{V} = RI\sqrt{1 - (I_c/I)^2}$$

Harmonic for $I \gg I_c$ Anharmonic for $I \simeq I_c$ Frequency $f_J = \frac{2e\overline{V}}{h}$

UNI WÜ

Topological Matter School - 25/08/2017
I-V curve from RSJ model

$$\overline{V} = RI\sqrt{1 - (I_c/I)^2}$$

Harmonic for $I \gg I_c$ Anharmonic for $I \simeq I_c$ Frequency $f_J = \frac{2e\overline{V}}{h}$

UNI WÜ

Phase-locked motion

UNI

WÛ

phase dynamics (RSJ model)

$$\frac{d\phi}{dt} = \frac{2eV}{\hbar}$$
$$I = I_S(\phi) + \frac{\hbar}{2eR}\dot{\phi}$$

motion locked to rf excitation

$$\frac{\Delta\phi}{\Delta t} = \frac{2\pi n}{1/f} \Rightarrow V_n = n\frac{hf}{2e}$$

Phase-locked motion

UNI

WÛ

phase dynamics (RSJ model)

$$\frac{d\phi}{dt} = \frac{2eV}{\hbar}$$
$$I = I_S(\phi) + \frac{\hbar}{2eR}\dot{\phi}$$

motion locked to rf excitation

$$\frac{\Delta\phi}{\Delta t} = \frac{2\pi n}{1/f} \Rightarrow V_n = n\frac{hf}{2e}$$

Phase-locked motion

UNI

WÛ

phase dynamics (RSJ model)

$$\frac{d\phi}{dt} = \frac{2eV}{\hbar}$$
$$I = I_S(\phi) + \frac{\hbar}{2eR}\dot{\phi}$$

Phase-locked motion

UNI

WÛ

phase dynamics (RSJ model)

$$\frac{d\phi}{dt} = \frac{2eV}{\hbar}$$
$$I = I_S(\phi) + \frac{\hbar}{2eR}\dot{\phi}$$

motion locked to rf excitation

$$\frac{\Delta\phi}{\Delta t} = \frac{2\pi n}{1/f} \Rightarrow V_n = n\frac{hf}{2e} \, \underbrace{\textcircled{\$}}_{-1}$$

4π-periodic supercurrent

doubled steps $\sin\phi \to \sin\phi/2$

$$V_n \to V_{2n}$$

mixture $2\pi/4\pi$? \triangleright

Shapiro response : frequency

Shapiro response

- ▷ >12 steps visible
- weak hysteresis on 1st step

- multiple odd steps missing
- ▷ at low frequency f \leq 4 GHz

Rokhinson *et al.*, Nat. Phys. **86**, 146503 (2012) Wiedenmann *et al.*, Nat. Comms **7**, 10303 (2016) Bocquillon *et al.*, Nat. Nano, DOI: 10.1038/NNANO.2016.159

Erwann Bocquillon

UNI

WÛ

Shapiro response : frequency

Shapiro response

- ▷ >12 steps visible
- weak hysteresis on 1st step

- multiple odd steps missing
- at low frequency f ≤ 4 GHz

Rokhinson *et al.*, Nat. Phys. **86**, 146503 (2012) Wiedenmann *et al.*, Nat. Comms **7**, 10303 (2016) Bocquillon *et al.*, Nat. Nano, DOI: 10.1038/NNANO.2016.159

UNI

WÛ

Shapiro response : power

Simulated response

- at low power : steps forming
- at high power : oscillatory pattern

Our device

- ▷ missing n=1,3,5
- « dark fringes »

UNI WÜ

UNI WÜ

Non-topological HgTe quantum well

Non-topological QW

- ▷ narrow well (5 nm)
- no band inversion
- ▷ similar mobility 1.5 10⁵ cm²V⁻¹s⁻¹

Shapiro steps

- no missing steps
- ▷ n-, p- regimes and gap verified
- ⊳ down to f= 0.6 GHz

Domínguez *et al.*, PRB **86**, 146503 (2012) Domínguez *et al.*, PRB **95**, 195430 (2017)

RSJ frequency dependence

Domínguez *et al.*, PRB **86**, 146503 (2012) Domínguez *et al.*, PRB **95**, 195430 (2017)

RSJ frequency dependence

⇒ crossover $f_{4\pi}$ yields : 1-3 modes ⇒ no Landau-Zener transitions ?

> Domínguez *et al.*, PRB **86**, 146503 (2012) Domínguez *et al.*, PRB **95**, 195430 (2017)

RSJ simulations

Theory : F. Domínguez & E. M. Hankiewicz

Summary of Part II

Fractional Josephson effect ...

- even sequence of Shapiro steps
- ▷ emission at f_J/2

... of topological states ?

- Landau-Zener transitions unlikely
- edge currents (SQUID pattern)
- contribution: 1-3 modes
- coexistence with conduction band ?
- ▷ discrepancy with R_n ?

UNI

WŰ

Spectroscopy of Andreev bound states

- ▷ tunneling DOS
- absorption spectroscopy
- SN junctions
 - ⇒ towards Majorana qu-bits

Pillet *et al.*, Nature Phys. **6**, 965 (2010) Bretheau *et al.*, Nature **499**, 312 (2013) Astafiev *et al.*, Science **327** 840 (2010) Peng *et al.*, arXiv 1604.04287 (2016)

Other HgTe systems

- HgTe nanowires
- ▷ QSH, QH, QAH, Weyl

Erwann Bocquillon

Open positions !

Thank you for your attention !

Open positions!

Post-docs

PhD students

